74F373/74F374

74F373 Octal transparent latch (3-State) 74F374 Octal D-type flip-flop (3-State)

FEATURES

- 8-bit transparent latch 74F373
- 8-bit positive edge triggered register 74F374
- 3-State outputs glitch free during power-up and power-down
- Common 3-State output register
- Independent register and 3-State buffer operation
- SSOP Type II Package

DESCRIPTION

The 74F373 is an octal transparent latch coupled to eight 3-State output devices. The two sections of the device are controlled independently by enable (E) and output enable (\overline{OE}) control gates.

The data on the D inputs is transferred to the latch outputs when the enable (E) input is HIGH. The latch remains transparent to the data input while E is HIGH, and stores the data that is present one set-up time before the HIGH-to-LOW enable transition.

The 3-State output buffers are designed to drive heavily loaded 3-State buses, MOS memories, or MOS microprocessors.

The active-LOW output enable (\overline{OE}) controls all eight 3-State buffers independent of the latch operation. When \overline{OE} is LOW, latched or transparent data appears at the output.

When OE is HIGH, the outputs are in high impedance "off" state, which means they will neither drive nor load the bus.

The 74F374 is an 8-bit edge triggered register coupled to eight 3-State output buffers. The two sections of the device are controlled independently by clock (CP) and output enable (OE) control gates.

The register is fully edge triggered. The state of the D input, one set-up time before the LOW-to-HIGH clock transition is transferred to the corresponding flip-flop's Q output.

The 3-State output buffers are designed to drive heavily loaded 3-State buses, MOS memories, or MOS microprocessors.

The active-LOW output enable (\overline{OE}) controls all eight 3-State buffers independent of the register operation. When \overline{OE} is LOW, the data in the register appears at the outputs. When \overline{OE} is HIGH, the outputs are in high impedance "off" state, which means they will neither drive nor load the bus.

ТҮРЕ	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74F373	4.5 ns	35 mA

ТҮРЕ	TYPICAL f _{max}	TYPICAL SUPPLY CURRENT (TOTAL)
74F374	165 MHz	55 mA

ORDERING INFORMATION

	ORDER CODE			
DESCRIPTION	COMMERCIAL RANGE Vcc = 5 V ±10%, Tamb = 0 °C to +70 °C	PKG DWG #		
20-pin plastic DIP	N74F373N, N74F374N	SOT146-1		
20-pin plastic SOL	N74F373D, N74F374D	SOT163-1		
20-pin plastic SSOP type II	N74F373DB, N74F374DB	SOT339-1		

INPUT AND OUTPUT LOADING AND FAN OUT TABLE

PINS	DESCRIPTION	74F (U.L.) HIGH / LOW	LOAD VALUE HIGH/LOW
D0 - D7	Data inputs	1.0 / 1.0	20 µA / 0.6 mA
E (74F373)	Enable input (active-HIGH)	1.0 / 1.0	20 µA / 0.6 mA
OE	Output enable inputs (active-LOW)	1.0 / 1.0	20 µA / 0.6 mA
CP (74F374)	Clock pulse input (active rising edge)	1.0 / 1.0	20 µA / 0.6 mA
Q0 - Q7	3-State outputs	150 / 40	3.0 mA / 24 mA

NOTE: One (1.0) FAST unit load is defined as: 20 µA in the HIGH state and 0.6 mA in the LOW state.

74F373/74F374

FUNCTION TABLE FOR 74F374

	INPUTS		INTERNAL	OUTPUTS					
OE	СР	Dn	REGISTER	Q0 – Q7	OFERATING MODE				
L	↑ (l	L	L	Load and read register				
L	↑	h	Н	Н					
L	↓	Х	NC	NC	Hold				
Н		Х	NC	Z	Dischle outputs				
н	↑	Dn	Dn	Z	Disable outputs				

NOTES:

H = High-voltage level

HIGH state must be present one set-up time before the LOW-to-HIGH clock transition h =

L = Low-voltage level

L LOW state must be present one set-up time before the LOW-to-HIGH clock transition =

NC= No change

Х = Don't care

High impedance "off" state =

Z ↑ LOW-to-HIGH clock transition =

₽ = Not LOW-to-HIGH clock transition

ABSOLUTE MAXIMUM RATINGS

Operation beyond the limit set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free air temperature range.

SYMBOL	PARAMETER	RATING	UNIT
V _{CC}	Supply voltage	-0.5 to +7.0	V
V _{IN}	Input voltage	-0.5 to +7.0	V
I _{IN}	Input current	-30 to +5	mA
V _{OUT}	Voltage applied to output in HIGH output state	–0.5 to V_{CC}	V
I _{OUT}	Current applied to output in LOW output state	48	mA
T _{amb}	Operating free air temperature range	0 to +70	°C
T _{stg}	Storage temperature range	–65 to +150	°C

RECOMMENDED OPERATING CONDITIONS

SYMBOL	DADAMETED				
		MIN	NOM	MAX	UNIT
V _{CC}	Supply voltage	4.5	5.0	5.5	V
V _{IH}	HIGH-level input voltage	2.0	-	-	V
V _{IL}	LOW-level input voltage	-	-	0.8	V
I _{lk}	Input clamp current	-	-	-18	mA
I _{OH}	HIGH-level output current	-	-	-3	mA
I _{OL}	LOW-level output current	-	-	24	mA
T _{amb}	Operating free air temperature range	0	-	+70	°C

74F373/74F374

DC ELECTRICAL CHARACTERISTICS

(Over recommended operating free-air temperature range unless otherwise noted.)

	DADAMETER	TEST						
STMBOL	FARAMETER		CONDITIONS ¹		MIN	TYP ²	MAX	
V			V _{CC} = MIN, V _{IL} = MAX,	$\pm 10\% V_{CC}$	2.4			V
V _{OH} HIGH-level output voltage			$V_{IH} = MIN, I_{OH} = MAX$	±5%V _{CC}	2.7	3.4		V
N-		V _{CC} = MIN, V _{IL} = MAX,	$\pm 10\% V_{CC}$		0.35	0.50	V	
V _{OL} LOW-level output voltage			$V_{IH} = MIN, I_{OL} = MAX$	$\pm 5\% V_{CC}$		0.35	0.50	V
V _{IK}	Input clamp voltage	$V_{CC} = MIN, I_I = I_{IK}$		-0.73	-1.2	V		
I	Input current at maximum input voltage	V_{CC} = MAX, V_{I} = 7.0 V			100	μA		
I _{IH}	High-level input current		V_{CC} = MAX, V_{I} = 2.7 V				20	μΑ
IIL	Low-level input current		V_{CC} = MAX, V_{I} = 0.5 V				-0.6	mA
I _{OZH}	Off-state output current, high-level voltage ap	plied	V_{CC} = MAX, V_{O} = 2.7 V				50	μA
I _{OZL}	Off-state output current, low-level voltage app	V_{CC} = MAX, V_{O} = 0.5 V				-50	μA	
I _{OS}	Short-circuit output current ³	V _{CC} = MAX	-60		-150	mA		
Icc	Supply current (total)	74F373	V _{CC} = MAX			35	60	mA
		74F374				57	86	mA

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type. 2. All typical values are at $V_{CC} = 5 \text{ V}$, $T_{amb} = 25 \text{ °C}$. 3. Not more than one output should be shorted at a time. For testing I_{OS} , the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a high output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, I_{OS} tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

						LIN	IITS		
SYMBOL	PARAMETER		TEST CONDITION	T_{ar} V _C C _L = 50	_{mb} = +25 _{CC} = +5.0) pF; R _L =	°C V = 500 Ω	T _{amb} = 0 °C V _{CC} = +5.0 C _L = 50 pF;	UNIT	
			MIN	ТҮР	MAX	MIN	MAX		
t _{PLH} t _{PHL}	Propagation delay Dn to Qn		Waveform 3	3.0 2.0	5.3 3.7	7.0 5.0	3.0 2.0	8.0 6.0	ns
t _{PLH} t _{PHL}	Propagation delay E to Qn	74F373	Waveform 2	5.0 3.0	9.0 4.0	11.5 7.0	5.0 3.0	12.0 8.0	ns
t _{PZH} t _{PZL}	Output enable time to HIGH or LOW level		Waveform 6 Waveform 7	2.0 2.0	5.0 5.6	11.0 7.5	2.0 2.0	11.5 8.5	ns
t _{PHZ} t _{PLZ}	Output disable time from HIGH or LOW level		Waveform 6 Waveform 7	2.0 2.0	4.5 3.8	6.5 5.0	2.0 2.0	7.0 6.0	ns
f _{max}	Maximum clock frequency		Waveform 1	150	165		140		ns
t _{PLH} t _{PHL}	Propagation delay CP to Qn	74F374	Waveform 1	3.5 3.5	5.0 5.0	7.5 7.5	3.0 3.0	8.5 8.5	ns
t _{PZH} t _{PZL}	Output enable time to HIGH or LOW level		Waveform 6 Waveform 7	2.0 2.0	9.0 5.3	11.0 7.5	2.0 2.0	12.0 8.5	ns
t _{PHZ} t _{PLZ}	Output disable time from HIGH or LOW level		Waveform 6 Waveform 7	2.0 2.0	5.3 4.3	6.0 5.5	2.0 2.0	7.0 6.5	ns

74F373/74F374

Product data

AC SET-UP REQUIREMENTS

				LIMITS					
SYMBOL PARAMETER			TEST	T_{a}	_{mb} = +25 _{CC} = +5.0	°C V	$T_{amb} = 0 \circ C$ $V_{CC} = +5.0$	C to +70 °C 0 V ± 10%	UNIT
			CONDITION			MAX	Ο <u></u> = 30 pr, MIN	MAX	
t _{su} (H) t _{su} (L)	Set-up time, HIGH or LOW level Dn to E		Waveform 4	0 1.0			0 1.0		ns
t _h (H) t _h (L)	Hold time, HIGH or LOW level Dn to E	74F373	Waveform 4	3.0 3.0			3.0 3.0		ns
t _w (H)	E Pulse width, HIGH	1	Waveform 1	3.5			4.0		ns
t _{su} (H) t _{su} (L)	Set-up time, HIGH or LOW level Dn to CP		Waveform 5	2.0 2.0			2.0 2.0		ns
t _h (H) t _h (L)	Hold time, HIGH or LOW level Dn to CP	74F374	Waveform 5	0 0			0 0		ns
t _w (H) t _w (L)	CP Pulse width, HIGH or LOW		Waveform 5	3.5 4.0			3.5 4.0		ns

AC WAVEFORMS

For all waveforms, $V_M = 1.5$ V. The shaded areas indicate when the input is permitted to change for predictable output performance.

Waveform 1. Propagation delay for clock input to output, clock pulse widths, and maximum clock frequency

Waveform 2. Propagation delay for enable to output and enable pulse width

Waveform 3. Propagation delay for data to output

Waveform 4. Data set-up time and hold times

DIP20: plastic dual in-line package; 20 leads (300 mil)

UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	C	D ⁽¹⁾	E ⁽¹⁾	e	e ₁	L	Μ _E	M _H	w	Z ⁽¹⁾ max.
mm	4.2	0.51	3.2	1.73 1.30	0.53 0.38	0.36 0.23	26.92 26.54	6.40 6.22	2.54	7.62	3.60 3.05	8.25 7.80	10.0 8.3	0.254	2.0
inches	0.17	0.020	0.13	0.068 0.051	0.021 0.015	0.014 0.009	1.060 1.045	0.25 0.24	0.10	0.30	0.14 0.12	0.32 0.31	0.39 0.33	0.01	0.078

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	RENCES	EUROPEAN	
VERSION	IEC	JEDEC	EIAJ	PROJECTION	
SOT146-1		MS-001	SC-603		

74F373/74F374

Product data

SOT146-1

74F373/74F374

Product data

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN	
	IEC	JEDEC	EIAJ		PROJECTION	
SOT163-1	075E04	MS-013				

Laton

10